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SUMMARY .

A method is described for investigating the effects of the dynamic
response of an autopilot on the stability of an aircraft-autopilot com-
bination. The method is based on a study of the constant-damping curves
obtained in a plane defined by varying two of the autopilot parameters.
The dynemics of the autopilot are assumed to be describable by a second-
order differential equation. The effects on the system stability of
varying the geln, natural frequency, and damping ratio of the automatic
damper are investigated, since these parameters determine the dynamic
response of the automatic damper.

The method is applied to the analysis of the lateral motion of an
airplane equipped with a second-order automatic yaw-rate demper. For
any condition of the airplane, an optimum combination of values of auto-
pilot natural frequency and damping ratio are shown to exist for any
given gain or required damping. A simple, analytical expression is
derived for obtaining a close approximation to these optimum points by
ignoring the effects of the aperiodic characteristic modes of the air-
plane. The assumption that these aperiodic modes may be neglected in
considering the effect of the yaw damper on the Dutch roll oscillation
i1s used in all the subsequent analysis. Expressions are derived for
the maximum demping obtainable under various conditions. For any given
natural frequency and damping ratio of the autopilot, excessive auto-
pilot gain will always cause the autopilot oscillatory mode to become
unstable.

Finally, the problem of designing an efficient yaw damper which
will improve the damping of the Dutch roll oscillation for various
flight conditions of an airplane is considered. A simple method of
design is illustrated by applying it to three flight conditions of an
airplane.

Calculated motions, based on the assumption of three degrees of
freedom for the lateral airplane motion, are presented. They agree
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with the results obtained from the constant-damping-curve analysis when
the aperiodic airplane modes are neglected.

INTRODUCTION

Recently, a great deal of interest has been shown in the use of
automatic stgbilization devices for improving the damping of the lateral
(Dutch roll) oscillation of aircraft designed to travel at transonic and
supersonic speeds. The analyses of such automatic stabilization systems
may be divided into two classes. In one kind of analysis the effects of
various types of autopilots on aircraft stabllity are considered, and
usually the autopilot is assumed to be an idealized system with no lags.
In the other kind of analysis the effects of the dynamic response of a
particular type of stabilization system on the stability of the aircraft-
autopilot combinetion are considered.

Some investigations of the effects of various types of idealized
autopilots on airplane lateral stebility are reported in references 1
to 3. References 1 and 2 are theoretical analyses, whereas in refer-
ence 3 experimental results are compared with theoretically predicted
effects. -

Analyses of the second kind, in which the effects of certain types
of dynamic response in a given stabilization system are considered, have
involved various approaches to the problem of determining the stability
of the complete system. The well-known frequency-response analysis has
been used in meny papers (for example, in ref. 4). Applications of
Nyquist's stability criterion, which was originally developed for feed-
back amplifiers, have also been used. For example, in reference 5
Nyquist's criterion is extended to systems with constant time lag in
the feedback circuit.

When the conditions which will insure a given amount of stability,
rather than just neutral stability, are sought, the use of constant-
damping curves has been found convenient. The method is described in
reference 6, and an example of its application is furnished by refer-
ence T. In reference 8 a semigraphical method is developed for obtaining
the conditions which insure neutral stability of an airplane-autopilot
system when a constant time lag in the autopilot is assumed; also, a
procedure is indicated for using the method of constant-damping curves
tQ determine the conditions which insure a given amount of damping.

This method is described in detail in reference 9.

In the present paper the constant-damping-curve analysis 1s applied
to an airplane-autoplilot system in which the autopilot dynamics are
represented by a second-order differential equation. Generally, the
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actual frequency response of most autopilots (especially yaw dampers)
1s better approximated when a second-order differential equation is
used to describe the dynamic characteristics of the autopilot than when
the constant-time-lag response is assumed. Physically, this assumption
implies that the autopilot may be represented as a damped oscillatory .
system. The present paper examines in some detail the effects on the
airplane-autopilot stability of variations in the gain, natural fre-
quency, and demping ratio .of -the autopllot

SYMBOLS
A, B coefficients of second—order differential equation for aute- |
pilot dynamics (see éq. (1))
b wing span, Tt
V50
c
X7
20Kz - =5~
Ky
Cy, trim 1ift coefficient, W cos 7/qS
Cy rolling-moment coefficient, Rolling mbment/qu
Cn yawing-moment coefficient, Yawing moment/qu
Cy lateral-force coefficiept, Lateral force/qS
CZ = EC_Z CY BGY Cn = EI_I
B dp | B~ 83 B OB
oCy aCy o - aCy
R " T
2v v EVV
oCy BCY aCy
r arb r -arb T 3L
av 2V 2v
oCn *
Cpr = —m
U5 T 3%

D time-derivative operator, d/dt
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F(D) characteristic poiynomial of airplane-autopilot system
Fo(D) characteristic polynomial of airplane alone
1 d°F(R)
fn(R) =T
n. grB
i= V-l
K gearing ratio of second-order autopilot, deg/d.eg/ sec
Ko gearing ratio required for an ideal no-lag rate damper to
provide a given amount of demping, de%/aeg/sec
Ky nondimensional radius of gyration in roll about longitudinal
stability axis
Kz nondimensional radius of gyration in &ay about normal
stability axis
KXZ nondimensional product-of-inertla parameter
m mass of airplane, slugs
n an integer
P, Q coefficients of a quadratic factor of characteristic equation

of airplane-autopilot system

Po» Qo coefficients of Dutch roll gquadratic (see eg. (10))

p = D¢

q dynamic préssure, %pvQ, lb/sq £t X
R real part of characteristic root, sec™l

r = DV

S wing area, sq hig ’

Tl/2 'time for amplitude of oscillation‘to démp to one-half its

original value, sec

2

t time, sec
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\ steady-state velocity, ft/sec

W weight of airplané, 1b

B angle of sideslip, radiaens unless otherwise specified

4 flight-path angle; radians

5 deflection of control surface, deg‘or radians

4 damp&ng ratio of second-order autopilot

Ky relative-density factor, m/pr

P air density, slugs/cu £t

¢ angle of bank, radians unless otherwise specified

¥ angle of yaw, fadians unless otherwise specified

» angular frequency (always referred to simply as "frequency"),
radians/sec

Wy frequency of Dutch roll oscillation, radians/sec

Wo natural frequéncy of second-order autopilot, radians/sec

[:]A(D) transfer function of airplane

[Jp(D)  transfer function of autopilot

Subscripts:
cr critical

max maximum

ANALYSTS

Preliminary Discussion

The dynamics of an autopilot used for aircraft stabilization can
often be represented by a differential equation of the type

D°8 + ADS + BS = KBX (1)
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Here ©® is the deflection of the control surface actuated by the auto-
pilot, and X 1is the component of airplane motion to which the auto-
pilot is sensitive. In general, X may be any combination of the air-
plane degrees of freedom or their time derivatives, or both. When B
is positive, as it must be for stable autopilots, let A = 2f{w, and

B = wo2. Then equation (1) becomes
D25 + 2fw DB + a)028 = Kmoex (2)

Although A and B are often more convenient to use for purposes of
analysis, the equivalent parameters { and w, are more meaningful

physically. Most of the results of this paper will therefore be pre-

sented in terms of these parameters. The parameter w, 1s the natural

(undamped) frequency of the autopilot system and the parameter ¢ is
the damping ratio, that is, the ratio of the actual demping of the
system to the critical damping. The parameter K which appears in
equations (1) and (2) is variously called the amplification factor, the
gain, or the gearing ratio. An autopilot which may be represented by
equation (1) or (2) is often called a second-order autopilot, since the
dynamics of the autopilot are represented by an expression involving
time derivatives of the control deflection up to and including second-
order derivatives.

The coefficients of the characteristic equation of an airplane
equipped with a second-order autopilot are functions of the stability
derivatives and mass characteristics of the airplane and of the three
autopilot parameters K, wgy, and { (or X, A, and B). These coef-
ficients are often called the stability coefficients. If the stability
derivatives and mass characteristics of the airplane are known for a
given flight condition, and if one of the autopilot parameters is
assigned some reasongble value, then the stability coefficients of the
airplane-autopilot system are functions of the remaining two autopilot
parameters only. Curves of constant damping of the charascteristic modes
of the total system may therefore be drawn in the plane defined by con-
sidering these two parameters as independent variables. Methods of
obtaining such curves, with particular application to oscillatory modes,
are discussed in references 6 and 7. From an examination of the constant-
damping curves the ranges of values of the two independent autopilot
parameters which will provide a given amount of damping to the oscilla-
tory modes of the airplane-autopilo%ssystem can be determined. Moreover,
8 detailed study of these constant-damping curves yields a considerable
amount of insight into some of the fundamental properties of the motions
of airplanes equipped with second-order automatic stabilization systems.
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'Application to Second-Order Yaw-Rate Damper

Equations of motion.- The method has been applied to the analysis
of the effect of a yaw-rate damper on the lateral stability of an air-
plane. When the dimensional time-derivative operator is used, the
lateral equations of motion are

2uDB - & Cygp + 2mpy - L opg = Loy (3)

2
v 2.2 1V 2 1V _
5 OngP + g DY - 25 Co DY + 2upiD Y - 3 3 O DY =

2
v _ve -
W2 Coe° " 37 On (%)

» ,
v 2, 17 o/ _ 1V _v
-;ECZBB+2ubKXZDW—EECZrD\V+2ubKX2D¢--2—ECZD¢—;—Cz (5)

In these equations the assumptions are made that CYP = CYr =7=0

and that the only result of the control deflection & is a yawing

moment. The equatioh of motion of the yaw-rate damper, written in
the form of equation (2), is

D% '+ 2LwDd + .28 = Kw, DY - (6)

The complete characteristic equation for the equations of motion
(3) to (6) is a sixth-degree equation. In fact, if Fo(D) be the usual
fourth-order characteristic polynomial for the lateral degrees of free-
dom described by equations (3) to (5) (see ref. 2), then the complete
characteristic equation for §he airplane-autopilot combination is

F(D)

(02 + 260D + 02)Fo(D) - X—i CngKeo® Ka‘ubn - Cyy) (2R -

v iz
5 CZPD) 3 CLCZ;J

N
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The characteristic modes obtained from this equation are usually two

oscillations and two aperiodic modes.
modes and one of the oscillations may be associated with the lateral a
motion of the airplane, whereas the second oscillation may be associ-

ated with the motion of the autopilot system.

NACA TN 2857

In most cases the two aperiodic

Choice of variable autopilot parameters for constant-damping

curves.- IT all the parameters in equations (3) to (5) are known for

an airplane in a given flight condition, the effects of K, wy, and t
qn the lateral oscillatory stability of the combined system can be
determined by varying these parameters in equation (7), as is shown in
appendix A. One of these parameters must be fixed if the stability
boundaries are to be plotted in a plane as described in appendix A, and
therefore the relative convenience of fixing each of the three param-

eters should be considered.

Since the dynamic characteristics of the

autopilot may be expressed in terms of its frequency response, a study
of the effects of the three autopilot parameters on this frequency
response should provide some insight into the question of which two

parameters should be varied simultaneously.

The transfer function of the stabilizing autopilot may be obtained

from-equation (6):

[6/0¥] (D) =

2
Koo,

Do+ 2toD + w02

(8)

Therefore, the expression for the autopilot frequency response is

[5/0v] (1) =

K

L2

m02

+ 2if L

D

= RP(a)) e

195(c) (9)

The frequency response of the autopilot is obtalned from equa-
tion (9) by plotting the amplitude Rp(w)

and phase angle 6p(w) of

the complex number [@/Diﬂp(iw) ageinst w. The phase angle is inde-

pendent of K, whereas the magnitude at any value of ® 1is proportional
to X. Thus the phase-angle curve and the shape of the magnitude curve
{ end w®,, and the gearing ratio simply acts as an

both depend only on

amplification factor on the magnitude curve.

From this point of view,

it would seem desirable to select reasonsble values of K and allow ¢ -
and @, to be the variable parameters in equation (7). A study of the

stability boundaries in the {w,-plane would then show the effect of
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varying the shape of the autopilot frequency response on the stability
of the total system, whereas the variation of K would show the effect
of varying the amplification factor. The stability boundaries were
therefore first calculated in the {wo-plane, and some of the effects

of varying K on these curves were investigated.

Since the gearing ratio K 1is in many respects the most important
parameter determining the stability of the total system, stability bound-
aries were also obtained in the Kwg-plane for fixed values of (. This
method of plotting the stability boundaries has two distinct advantages.

\First, the two most important parameters, K and w,, are allowed to

vary. Second, the fixed parameter { is known to be between O and 1
for stable oscillatory autopilot systems; therefore, the effect of
varying { on the stability boundaries in the Kwy-plane can be deter-

mined fairly easily by choosing several values of { which will span
this range.

Constant-damping curves with gearing;ratio fixed; three degrees of

.freedom.- In order to investigate the effect of the seecond-order yaw

damper on the stability of ' the system, values of the alrplane parameters
were inserted into equations (3) to (5) to correspond to a cruising
flight condition for the airplane described in table I. The Dutch roll
oscillation for this flight condition has a period of 1.30 seconds and
T1/p of 2. 60 seconds.

In order to investigate the type of constant-dsmping curve which
appears in the {wp-plane (or AB-plane) for constant K, a value of K

. was chosen which would give good damping if used in a perfect propor-

tional yaw damper that has no inertia or damping. The value K = 0.086
degree of rudder deflection per degree per second of yawing velocity
was chosen, which would make Tl/2 of the Dutch roll oscillation equal

to 0.75 second. The constant-damping curves in the AB-plane were then
drawn for this value of K by using the equations given in appendix A,
and are shown in figures 1 to 5. The frequencies of the modes on a
given curve vary from zero to infinity, and typical values are shown on
the indlvidual curves.

As pointed out in appendix A, it is simpler to obtain the curves
first in terms of A and B and theén substitute the more significant
parameters € and wy. However, for a preliminary investigation of
the general types of curves and the manner in which they change as R
and o (the damping and frequency parameters) are varied, continued
use of the AB-plane is more convenient because negative values of B
may be considered, whereas the parameters { and w, have an obvious
physicel significance only for positive values of B. For this reason,
the typical curves of figures 1 to 5 are drawn in the AB-plane. These
figures are presented and discussed primarily to familiarize the reader
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’

with the general types of curves which occur, so that the later com-
parison of the curves in the {w,-plane will not be too confusing. The
practically significant portions of the curves are essentially the same
in either plene.

Figure 1 presents the zero-damping curve, which is continuous and
crosses itself to form a loop. The loop has no practical significance,
since it merely defines the region-of autopilot parameters for which
there are two unstable oscillations. The hatch marks indicate the
boundary of the region in which all modes are stable. In all cases the
B =0 axis is the boundary at which an aperiodic mode becomes unstable.

The curve of greatest practical importance is that defined by the
damping of the airplane without the autopilot; that is, the curve for
Tl/2 = 2.60 seconds. This curve, shown in figure 2, is discontinuous.

When o sapproaches the airplane frequency (the frequency of the Dutch
roll oscillation of the airplane alone), both A and B become infi-
nite in magnitude. These infinities are caused by the vanishing of a
factor in the denominator of the expressions for A and B. At the
airplane frequency a new branch of the constant-damping curve is started.
The region in the AB-plane in which there are no oscillatory modes that
have less demping than the airplane alone (indicated by hatch marks) is
bounded by this new branch of the curve. The dashed line shows the
value B = Q, = 23.84, where Q, is the constant coefficient of the

Dutch roll quadratic, which is written as D2 + P,D + Qg. The signifi-
cance of this value will be discussed subsequently.

Figure 3 shows a typical curve for a damping somewhat greater than
that of the alrplane alone. It has two points of discontinuity and
three branches. Thus, the airplane-damping curve shown in figure 2 1is
a critical curve, separating the continuous curves for less damping
from the doubly discontinuous curves for greater damping. The two
critical values of ® are very close, so that the branch of the curve
in the negative-B region corresponds to & very small range of w.

This branch of the curve is of academic interest only. The part of the
curve in figure 3 which forms the significant boundary is again the
curve in the upper right quadrant of the plane, defining a region of
better damping indicated by hatch marks.

The curve in figure 4 is for T1/2 = 0.75 second, the damping

which the airplane-autopilot oscillation would have if the autopilot
had no lags. This curve has another branch at large negative values
of B and negative A, but this branch is not shown because, as has
been mentioned, it is of academic importance only.. (It should be
noted that the significant portions of all these discontinuous curves
start at values of @ near the airplane frequency.) The curve for
T1/2 = 0.75 second also represents a critical damping value, since
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for larger values of damping the curves again become continuous and
form loops, as shown in figure 5 for Tl/2 = 0.60 second. In the

following discussion the damping corresponding to T1/2 = 0.75 second

" and the associated constant-damping curve will be called the critical
damping and critical curve. ’

These curves will be discussed in greater detail. For the present
it will suffice to note that, for any gearing ratio, greater damping
can be provided by a second-order autopilot than could be provided by
a perfect proportional autopilot with the same gearing ratio, provided
that the proper values of € and wy, are chosen from a closed-loop

region of the type shown in figure 5.

Equivalent-oscillator concept.- Appendix A shows that, in deter-
mining the effect of the yaw damper on the stability of the Dutch roll
oscillation, the airplane is represented by an equivalent oscillator
whose period and damping are those of the Dutch roll oscillation.
Explicitly, the assumption is made that the three-degree-of-freedom
equations of motion of the airplane, given by equations (3) to (5),
may be replaced by the single equation of motion

- 2
K - 2 2
2 X7 2 \'i \'A
2up| Kg~ - —— (D ¥+ P DV + W) - YX_ . =YX_ (10)
"( e ) oV BN "R Bee? Tz

The physical interpretation of this assumption is that the effect of
the aperiodic modes on the Dutch roll stability is small. The quadratic

'equation D2 + PoD + Q; = O yields the complex characteristic root -
corresponding to the Dutch roll oscillatory mode.

The analysis is greatly simplified by this equivalent-oscillator
concept, and it will be seen that this simplified analysis gives adequate
results. Except where otherwise specified, the equivalent oscillator is
assumed to represent the airplane in all the subsequent discussions. The
curves in figures 1 to 5, obtained from the three-degree-of-freedom
analysis, were drawn primarily as a check of the accuracy of the
equivalent-oscillator approximation.

In figure 6 the constant-damping curves calculated by the equivalent-
oscillator analysis for representative values of damping are presented in
the {wy-plane. In interpreting these curves it is essential to remember
that two oscillations are present for most of the significant points in
the Qwo-plane. One of these oscillations may generally be associated
with the airplane and the other with the autopilot. Therefore, at every
point in the most significant regions of the {wy-plane two damping curves
must cross each other.
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. A1l the curves previously obtained from the three-degree-of-freedom
analysis are presented in figure 6, and in addition the boundary of
equal roots and the curve for Tj/p = 0.38 second are shown. Each of

the constant-damping curves starts on the boundary of equal roots at
® ='0. Before the general discussion of figure 6 is presented, the
significance of the curve for T1/2 = 0.38 second will be explained.

Maximm damping with fixed gearing ratio.- As mentioned previously,
the constant-damping curves for higher damping than the critical damping
are continuous and form loops defining the regions which insure greater
dsmping. Since the loops become smaller for larger values of damping,
it is reasonable to assume that for some value of damping the loop will
become vanishingly small - only & cusp in the curve (see ref. 9). This
curve then corresponds to the maximum damping which can be obtained for
the Dutch roll oscillation with a second-order ysw-rate damper for the
given gearing ratio. Thus the cusp point may be considered the optimum
point in the {w,-plane for a given gearing ratio, and this point deter-
mines the shape of the autopilot frequency response which will give the |
highest demping to the Dutch roll oscillation for a given amplification
factor K. .

These optimum points may be obtained by a rather simple algebraic
analysis because they correspond to a double oscillatory root of the
characteristic equation, which is a quartic equation when the equivalent-
oscillator concept is used. The derivation of the optimum-point char-
acteristics is presented in appendix B. The damping and frequency of
the double oscillatory mode are assumed to be given by the characteristic
equation ) ’

(02 +m+qf =0 (1w

As shown in eppendix B, the value of Q may be obtained by solving the
quadratic equation, for a given gearing ratio,

C1K 2 2
(1+-—-——Poi2\/§g)q-2%cz+% ~o (22)

For positive values of K +the larger real root iﬁ equation (12) is used.
With this value for Q, P may be obtained from the expression
2
o (Bt CK)& - P,

(13)
205(Q - Q)




NACA TN 2857 - | - 13

These values of P and Q, when used in equation (11), give the charac-
teristic root (and therefore the period and damping) corresponding to the
best-damped Dutch roll motion obtalnable with the given gearing ratio.

In order to find the autopilot parameters A and B (or ¢ and ap)
which yield this maximum dsmping, these values of P and Q are sub-
stituted into the following expressions for A and B:

A =2P - P, (1h)

2
Q
B = ~ 1
; o (15)

’

The maximum damping for the airplane under discussion for _
K = 0.086‘de%/aeg/sec was obtained in this manner and was found to

.correspond to Tq/p = 0.38 second. As can be seen from figure 6, this

curve does have & cusp at the optimum bbint in the gwb-plane.

Since the high-damping curves in the three-degree-of-freedom :
analysis also form loops, the same type of analysis can be used to
obtain the cusp point in the {wy-plane. The calculation of the maximum
damping would be much more complicated, however, for the three-degree-
of-freedom case. To show that the maxlmum damping as calculated by the
equivalent-oscillator analysis -is an adequate approximation to the maxi-
mum damping for the complete airplane, the curve for T1/2'= 0.38 second

was drawn for the three-degree-of-freedom case also.

The comparison of the curves for T1/2 = 0.38 second <for the two

cases 18 shown in figure 7. In this flgure the significant portions of
other typical damping curves are also shown. For practical purposes,
the equivalent-oscillator analysis is an adequate approximation to the
three-degree-of-freedom analysis In determining the required constant-
damping curves, including the maximum-damping point. It might also be
noted that the critical damping is not exactly the same in the two cases
(Tl/2 = 0.75 second for the three-degree-of-freedom case and

T1/2 =,0.73 second for the equivalent one-degree-of-freedom case).

Discussion and interpretation of demping boundaries in {wo-plane.-

Figure T shows that there is little change in the stability boundaries
when the lateral motion of the airplane is represented by the equivalent

. oscillator. This result means that the real characteristic modes of the

lateral motion cen be neglected in calculating the effect of the auto-
metic yaw damper on the Dutch roll oscilletlon. The only fundamental
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difference occurs in the airplane-damping curve, Tl/é = 2.60 seconds.

For the equivalent oscillator, this curve is discontinuous at a value of
®, equal to the airplane frequency, 4.8 radians per second. The slope

of the curve becomes infinite at this value of w,, and the portion of

the curve bounding the higher-damping region begins here at § = ». 1In
the three-degree-of-freedom analysis, the curve for T1/2 = 2.60 seconds
has a slope which becomes very large at oy = 4.8 radians per second
but remains finite. Thus the difference in the curves is negligible
for practical purposes. Since the significant portion of the airplane-
damping curve begins at wgy = 4.8 radians per second for any positive
gearing ratio, the damping of the equivalent oscillator cannot be
improved with a positively geared yaw-rate damper which has a natural
frequency less than the frequency of the oscillator itself. Figure T
shows that for practical purposes the same statement can be made for
the actual airplane.

Certain general effects of varying the autopilot damping and natural
frequency on the stability of the system may be observed in figures 6
and 7. The area of interest is the roughly rectangular region Indicated
by the hatch marks in figure 2 in the AB~plane, in which both oscillatory
modes have more damping than the airplane alone. The value of B indi-
cated by the dashed line in figure 2 corresponds to the airplane fre-
quency (@wp = 4.8 radians per second). If ¢ is fixed at any positive
value and o, is increased, figure 6 indicates that the system damping
increases to a maximum value at some value of «, and then drops off,
approaching the critical damping as w, approaches infinity. Similarly,
at any fixed natural frequency greater than the Dutch roll frequency, if
the valve of ¢ is increased from zero the damping reaches a maximum at
some value of { and then drops off, approaching the airplane damping
as ¢ approaches infinity. Thus, for fixed { there is an optimum o,
and for fixed w, an optimum ¢{. The best of all these points is the

maximum-damping point, which is obtained by the simple calculation pre-
viously described.

Tmportance of oscillation frequencies in interpreting constant-
damping curves.- From stability considerations alone, the regions defined
by the hatch-marked portions of the curves shown in figures 1 to 5 deter-
mine the values of autopilot parameters which guarantee at least the
indicated amount of damping. However, points may be chosen outside a
given region which still seem to give an airplane motion that is as well-
damped as that for points in the region. For example, figure 8 shows
the motions obtalned with autopilots having the characteristics defined
by points 1, 2, and 3 in figure 6. All motions shown in this paper were
obtained from a Reeves Electronic Analog Computer, by use of the three-
degree-of-freedom equations of motion. The fact that these motions check
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the predictions made from the equivalent-oscillator stability boundaries
confirms the adequacy of the equivalent-oscillator analysis.

Points 2 and 3 are on the good portion (loop) of the curve for
T1/2 = 0.60 second, but point 1 is on the intersection of the curves

for Tj/p = 0.60 second end Tp/p = 2.60 seconds and is outside the

good region defined by the loop. However, the actual airplane motionms,
represented by the sideslip and roll motions in figure 8, are very
similar for all three autopilots, and the lightly damped mode is impor-
tant only in the rudder motion for the case corresponding to point 1
(fig. 8(a)). Actually, the effect of the lightly damped mode can be
seen in the sideslip motion of figure 8(a), but it is almost negligible.
Although point 1 in figure 6 corresponds to Ty /p = 2.60 seconds, as far

as the airplane motion is concerned this autopilot would seem to give as
good damping as autopllots whose characteristics fall in the loop of
Ty /o = 0.60 second.

In order to understand why the lightly damped mode corresponding
to point 1 in figure 6 has practically no effect on the airplane motion,
the frequencies of the modes which are predicted at this point must be
considered. Since for the most significant points in the fwy-plane there

must be two characteristic oscillations, each of these points is actually
a crossing point of two constant-demping curves, as can be seen for

point 1 in figure 6. The general trends of the frequencies along the
damping curves are shown in figures 1 to 5. Along the final portion of
each curve (that is, the portion which approaches the { = 0 axis), the
frequencies correspond to the autopilot frequency. At point 1 in fig-
ure 6 the mode on the curve for Tj/p = 2.60 seconds has a frequency

o & 10 radisns per second, a value which corresponds to the autopilot
frequency (as can be seen from fig. 2), whereas the better-damped mode
is the airplane mode with o & 5 radians per second (see fig. 5).
Since. the frequency of the autopilot mode is approximately twice that
of the airplane mode, the effect of the corresponding lightly damped
rudder oscillation on the airplane motion is small, for the airplane
cannot follow such rapid oscillations.

Consideration of the frequencies which occur at points along the
demping curves is thus seen to be important in attempting to predict
the type of motion which would be obtained with autopilots whose char-
acteristics are determined by these points. This frequency effect is
brought out even more strongly by figure 9, which shows the motions
corresponding to points 4 and 5 in figure 6. In this case both points
are on the zero-damping curve. At point 5 both modes have approximately
the same frequency. However, at point 4 the autopilot frequency is the
neutrally Yamped one, with o s 13.5 radians per second, and the airplane
mode lies on one of the well-damped loop curves, which crosses the curve
for Tl/2 = o at point 4. The motions shown give the results predicted

——— Vo —— i AT ———
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by the analysis. As shown in figure 9(a), corresponding to point k4, the
neutrally demped high-frequency rudder motion has little effect on the
well-damped airplane motion. On the other hand, for point 5 the effect
of ‘the neutrally demped mode, which is close to the natural airplane
frequency, is the dominant neutrally damped airplane oscillation shown
in figure 9(b). Autopilots which cause very poorly damped control
motions, however, would be unsatisfactory from a practical point of

view even if their effect on the airplane damping were satisfactory.

Effect of varying X on curves in {uwp-plane.- The effect of gearing

ratio may be obtained by considering the effect of varying K on the
curves in the {wy-plane. By using the equivalent-oscillator analysis,

the critical damping is found to be Rgp =,’%(Po + ClK). Since the air-

plane dampiné is -%Po, the critical damping becomes the airplane damping

as K vanishes. This result is, of course, necessary, since zero
gearing ratio implies no autopilot. As KX is made smaller, the whole
set of loop curves in figure 6 tends to move to the left, since the
critical curve approaches the airplane damping curve. Conversely, as K
increases, these curves move to the right. Also, the loop corresponding
to any given damping larger than the critical damping must expand as K
increases, since the given damping comes closer to the critical damping.
Therefore the given loop approaches the infinite loop asymptotic to the
critical-dsmping curve. Physically, this result simply means that as
the gearing ratio is increased there is a larger range of values of ¢
and w, for which a givéh damping larger than the critical damping may

be obtained.

A clearer idea of the way in which the set of loop curves moves in
the {wy-plene as K varies is obtained by investigating the variation
of the maximum-damping point as K varies. The position of the maximum-
damping point is itself important, because it is the optimum combination
of £ and w®, for any value of K; but, also, since this point is a
kernel which is surrounded by all the loops, the motion of this point
gives a clearer idea of the motlon of any loop as ‘K varies. The
desired variation may be easily obtained by inserting values of K into
equations (12) and (13), and using the resulting values of P and Q
in equations (1l) and (15). However, a simpler and clearer method is
shown to be possible in appendix B, wherein a value of damping is assumed
and solutions are found for the values of XK, A, B, and @ which will
make this the maximum damping. This procedure clearly gives the smallest
magnitude of K with which the desired damping may be obtained with the
second-order automatic yaw damper, and the associated values of A and
B +then may be considered as "optimm" values for the given airplane and
desired damping. In this method equation (13) is replaced by

1.386 (16)

P=-2R =
Ty/2
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vhere R and Ty/p correspond to the desired dsmping. Equation (1)
then gives A Iimmediately, and Q may be obtained from the expression

=Q, 1 JES(P - PO) ‘ (17)

Equation (17) will give two values of Q, one greater than Qg
and the other less than Q,. By using these values in equation (15),
the corresponding values of B are obtained, and from equation (13):

K - 2rPQ - PB - AQOV

C4B (18)

The smaller value of Q. obtained from equation (17) gives a value

of B corresponding to a value of" wy lower than the airplane fre-
quency and results in a negative K. The larger value of Q glves a
value of g, higher than the airplane frequency and positive gearing.
Figures 10 and 11 show the variation of the optimum points. Figure 10
shows the curve on which the points lie in the (w,-plane. Figure 11
shows the gearing necessary to obtain any given damping as the maximum

demping (when the autopilot characteristics are the optimum ones for
that gearing).

The point corresponding to K = 0O on-each curve is significant
only as a limiting point, since zero gearing implies no-autopilot.
Since the double oscillatory mode corresponding to the maximum damping
must approach the Dutch roll mode as K approaches zero, the optimum
point in the me-plane approaches the values corresponding to the Dutch

roll mode. Increased damping of the system can be obtained with either
positive or negative gearing. The positive-K branch of the locus of
optimum points given in figure 10 lies in the range of values of wg
higher than the airplane frequency. Thus, as mentioned previously,
second-order yaw dampers with positive gearing must have a value of wg
higher than the airplane frequency in order to improve the damping.
Also, the variation of the optimum points on the positive-K branch of
figure 10 shows that, if increased damping from the autopilot is sought
by increasing the gearing ratio, the natural frequency and demping ratio
of the autopilot should generally be increased 81multaneously This
fact can be of considerable practical importance, as will be brought
out more clearly in subsequent discussion.

Comparison of advantagés of positive and negative gearing.- If
negative gearings are used, , values lower than the airplane frequency

must be used in order to improve the damping. The possibility of using
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a negatively (reverse) geared second-order rate autopilot to improve the
damping seems rather surprising, since for a perfect proportional rate
autopilot, reverse gearing would simply decrease the effective Cnr and

therefore decrease the damping. The use of reverse gearing is made
possible by the phase relations introduced between the airplane and
rudder motions by the dynamics of the second-order autopilot. Actually,
this possibility is no more surprising than the fact that this type of
autopilot will improve the damping with positive gearing only when the
autopilot natural frequency is greater than the airplane frequency.
Clearly, this restriction arises from the same type of phase-relation
requlirement.

The use of a negatively geared yaw damper would seem advantageous
because of its properties in a steady turn. For constant yawing velocity
the negatively geared yaw damper deflects the rudder in a direction to
maintain the turn, whereas the positively geared yaw damper must be
overridden, either by the pilot or by the boost system. However, certain
objections to the use of negative gearing in an automatic damper for use
with an airplane actually make such use impractical.

The main obJection to the use of negative gearing is based on the
fact that the equivalent oscillator represents the airplane only in a
given flight condition. At different flight conditions the character-
istic airplane oscillation has different values of dsmping and frequency;
therefore, the airplane is represented by a different equivalent oscil-
lator at each flight condition. To design an sutomatic damper for one
flight condition only is impractical, since this sutomatic damper may
have a harmful effect on the damping at some other flight condition.
Autopilot characteristics must therefore be obtained by some compromise
method which will improve any practical flight condition. Now, it can
be shown that the regions of improved damping in the {wo-plane for nega-
tive values of K are loops resembling a reflection in the A =0 axis
of the unstable loop shown in figure 1. These loops must lie in a rela-
tively narrow range of w, values, since they are confined to values
of @y lower than the airplane frequency. Moreover, for a given magni-
tude of gearing ratio, the loop for any demping is much smaller for nega-~
tive K than for positive K. PFigure 11 shows that the loops for nega-
tive values of K bresk down at much smeller values of damping than the
loops for positive values of K of the same magnitude. If these small
loops in the {wy-plane are drawn for a desired amount of damping for two

extreme flight conditions with different natural frequencies, the possi-
bility of their intersecting in a region of the {wo-plane which would

give the desired damping to both flight conditions is relatively small.

For positive gearing, on the other hand, improved damping can be
obtained up to the critical damping for an infinite range of w, starting

at a value of w®, somewhat greater than the natural airplane frequency

————————— e ——



NACA TN 2857 19

in the particular flight condition. There is, therefore, an infinite
range of ®, values which will insure at least the critical damping

for any number of flight conditions. The minimum value of W, neces-

sary 1s somewhat greater than the highest natural frequency of any of
the possible flight conditions of the airplane.

Maximum damping for any gearing ratio.- The highest maximum damping
and the corresponding value of X can be obtained by determining where
the modes corresponding to the optimum points in figures 10 and 11 become

nonoscillatory. This condition will occur for P = kQ. By using this
condition in equation (17), where the positive sign corresponds to posi-
tive X and the negative sign to negative X, the following expressions

are obtained:
_ .
2 2 -2+ (k >0) - (19)
L
| P
Prox = 2\/@3(!2 + ﬁ - 1) (K < 0) | (20)

Since P, is small for lightly demped airplanes, the positive gearing
ratio gives a higher value. For example, for P, = 0, equation (19)
gives a value approximately six times as large as equation (20).
Actually, these limiting values for the damping are of only academic

interest as far as application to the airplane is concerned, since they
are so large as to be far sbove any required demping. -

vl
Il

Coﬁstant-damping curves in Kmb¥plane with damping ratio fixed.- In

order to obtain a more complete picture of the effect of varying gearing
ratio on the stability of the system, constant-damping curves were
obtained in the Kwy-plane with { fixed: As shown in appendix A, it

is necessary to solve a quadratic equation for the ®, Vvalues, which
may then be substituted into an expression for X, as follows:

(- % - P - atoy(r, + ) (e? + 1) + ol -

(qo + 2P + 282) (a? + 52) = 0 (21a)
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K =~Cri024{}2§w0 + Py + hB)wz -

[(Po + 2R)we2 + 2ty (Qq +AP0R + 3R2) + R(QQO + 3P,R + maﬂ}
(21v)

For the first calculations, { = 0.3 was assumed as a reasonable
value of damping ratio for the autopilot. A set of curves was obtained
for this value of {. The effect of varying . { on the curves in the
Kwg-plane was then investigated by obtaining several typical curves for

¢ =0.6 and' £ =0.9.

The zero-damping curve for ¢ = 0.3 (shown in fig. 12) indicates
that better-than-neutral demping can be obtained for any value of wg
and for positive or negative gearing. This is true for any damping up
to the airplane damping. The boundaries for less than the airplane
damping are of no practical interest, however, and figure 12 is pre-
sented only for completeness.

Figure 13 shows the alirplane demping boundary, which is a simple,
continuous curve. This curve alone does not indicate clearly the region
that defines points which give better damping than that for the air-
plane without yaw damper. However, the axis K = 0 must be part of the
boundary also, since X = O implies no autopilot, which means that the
airplsne has its original damping. In order to verify that the region
defined by the hatching in figure 13 is the good region, a curve was
drawn for a slightly greater damping (Tl/2 = 2.50 seconds). This curve

is shown in figure 14 and confirms the fact that the region insuring
damping greater than that of the airplane is as shown in figure 13.
\

The results of figure 13 confirm several of the previous conclu-
sions concerning negative gearing which were obtained from figures 10
and 11. A relatively small region is present in the Kwg-plane in which

improved damping can be obtained with negative X, and this region is
confined to frequencies less than the airplane frequency.

Figure 1k shows that the regions of negative K which will give
improved damping are loops in the Kwg-plane. Thus, the maximum damping

for negative K may be obtained from the cusp point corresponding to
the breakdown of these loops for any values of t. Since ¢ is con-
stant, a particularly simple expression can be obtained for Rpgy.

If ¢ and o, are used instead of A and B, equations (14) amd (15)

may be used in equation (17), and the result is
e
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VB - R

P
W+
0 = Borzg (K <0)  (23)

1+¢

for the values at the cusp points. These values are given by the

two curves in figure 10. The maximum damping for negative K at any
value of { may then be obtained by using equation (23) in equa-
tion (14) to yield :

\/Q%)t;

—-PO e "
w22 (B B) L o) ey

If the values of Py, and Qu for the Dutch roll of the airplane under
consideration are used and ¢ is taken equal to 0.3, equation (24)
shows that the maximum damping with negative gearing corresponds to
Tl/2 = 1.0 second. ’ .

Figure 15 shows the curve for this value of damping. The cusp
point for negative gearing occurs at We = 3.96 radians per second and

K = -0.035 de%/heg/sec. For positive gearing, on the other hand, an
infinite range of wy, values which will give better than this damping
with € = 0.3 1is seen to be available. This bears out the previous
statement that the design, with regard to damping retio and natural fre-

quency, of a compromise autopilot which will improve a variety of flight
conditions is less restricted when positive gearing is used.

Since the curve of figure 15 is typical of the curves for dampings
somewhat greater than the airplane damping, it will be discussed in more
detail. The curve has two separate branches and the discontinuity occurs
between o = 4.8 radians per second and o = 5 radians per second. This

critical frequency actually is w¢p = \(Qo - RS (see eq. (21a)). From

what has been said previously, the portion of the curve of greatest
interest is the second half (for positive K). This starts at the criti-

B, + 2R
. : C1
value for which an ideal autopilot (one with no lags) would yield the

cal frequency at ®y = » and K =- This value of K " is the

given damping, and will be denoted as Ko- The bottom part of the bound--

ary can be seen to represent the values of K and ®, Wwhich make the
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airplane mode have the given damping, since the critical frequency is
near the airplane frequency. On the other hand, the top part of the
boundary represents the values of K and @, at which the autopilot
mode has the given damping, since the values of o along this part of
the curve are very close to the corresponding values of .

Figure 16 shows the boundary for T1/2 = 0.60 second. The loops
for negative damping have disappeared. This curve is the cusp curve
for positive X, obtained by using equation (22) in equation (14). This
fact has little practical significance, however, since there is no funda-
mental change in the shape of the curves at this damping.

For large values of damping, further changes occur in the type of
damping curves in the Kw,-plene. For small values of R, equation (21a)
gives real solutions for @y with any value of ®. However, for larger
values of R the discriminant of equation (2la) chenges sign for certain
combinations of @ and R, so that no real solutions for @y, exist.
Setting this discriminant equal to zero yields

(0 + R2f24-[§2(P0 + 2Ry2 - 2R(P, + 2R) - QQ;](w? +R2) +
%[0 + 2R(Po + 2R)| = 0 f (25)

When this equation has a positive, real root for the quantity w? + R2,
this root determines the range of real values of w for which the solu-
tions for g in equation (2la) are complex. The value of R for
which real roots occur in equation (25) is obtained by equating the
discriminant of this equation to zero to give

(1- B)% - (1- B)Prg + ;2(3-1; P Ae? - Qo> =0 (26)

For the alrplane being considered, with { = 0.3, the values of R
obtained from equation (26) are R = -1.58 and R = 1.61. Since only
the positive-damping boundaries are of interest, only the negative value
(which corresponds to Tq/p = 0.4k second) need be considered. For this

value of damping, the range of values given by equation (25) becomes a
single value. For greater damping, equation (25) gives a finite range
of values of « which will not occur at any real value of w,. Thus,

no value of o in this range can occur for the required damping when
= 0.3. The constant-damping boundaries for these larger values of
damping, which are characterized by the absence of a given range of
o values, are of a somewhat different type from the curves for lower
damping.

i
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As an example of the type of curve which occurs for large damping
values, the boundary for Tj/p = 0.25 second (R = -2.77) is presented

in figure 17. Substituting ¢ = 0.3 and R = -2.77 into equation (25)
gives o = 4.3 radians per second and w = 6.3 radians per second.

That is, no values of ® in the range 4.3 < < 6.3 radians per second
occur on this curve. Some of the significant features of this curve
will now be described, since it is typical of the higher-damping curves.

The significant portion of this curve defines the same general type
of wedge-shaped good region as was present for lower dampings. On the
lower part of the significant boundary, the frequency of the mode with
the given damping is in the range 4.0 < ® < 4.3 radians per second;
that 1is, the frequency varies between the critical frequency and the
smaller frequency given by equastion (25). These frequencies clearly
represent the airplane mode. At the point of the wedge the previously
discussed discontinuity appears. At thils point both the airplane and
autopilot modes have the same damping. On the upper part of the bound-
ary the autopilot mode has.the required damping and the airplane mode
has higher damping. ’

Figure 18 is a collection of the significant portions of the damping
curves previously discussed. This figure shows that, as the reguired
damping increases, the wedge-shaped region in the positive Kwg-plane
which insures this amount of damping moves upward and to the right. The
figure also shows that the damping obtainable with a second-order yaw
autopilot cannot always be increased merely by increasing the gearing
ratio. Theé reason is that, for a given value of ®,, increasing X

beyond a certain value makes .the autopilot mode less stable. Clearly,
more demping can be obtained by increasing o at the same time that

K 1is increased. These results confirm the statement made in the dis-
cussion of figure 10 that it may be necessary to increase the natural
frequency when the gain is increased.

It is important to remember that, as in the {wp-plane, two oscil-
lations are present in the regions of most interest in the Kwg-plane.

The typical frequencies given on the individual boundaries indicate that
the portions of the wedge-shaped boundaries where K 1is high correspond
to the autopilot mode having the given dasmping, whereas the parts where
K 1is low correspond to the airplane mode having the given damping.

Figure 18 seems to indicate that an infinite amount of damping
might be obtainable by simultaneously increasing K and g, irn contra-

diction to the discussion concerning figures 10 and 11. However, further
changes occur in the type of curve at larger dampings. Equation (21la)
indicates that a change might be expected when R > J@;, since the quan-

tity Qo - R2 - w2 does not go through zero for any value of . That
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is, there no longer is a critical frequency wcy =\lQ0 - Re. Moreover,
the good regions as previously shown do not take into account the bound-
ary of equal roots. That is, within the good regions no oscillation has
less damping than the indicated amount; however, a real root with less
deamping than the indicated amount may be present at points above the
boundary of equal roots. The explanation is as follows. At the w =0
point of a given high-~damping curve (which point is on the boundary of
equal roots) there are two equal real roots with the indicated amount
of damping. However, at points above the boundary of equal roots, one
of these real modes will decrease in damping. The oscillatory mode
which breaks down into two real modes at the boundary of equal roots in
the Kmg~-plane is the airplane mode, since, as can be seen from fig-

ure 18, oscillations at autopilot frequency do occur above the boundary
of equal roots. Thus, for points above this boundary the airplane mode
becomes nonoscillatory. The physical reason for this phenomenon is that
large gearing ratios cause the airplane mode to be overdamped. The
boundary of equal roots in the {wy-plane, on the other hand, corresponds
to large { values. Therefore, as can be seen from the curves, the
mode which is overdamped at points above this boundexry is the autopilot'
mode. g .

Strictly speaking, the boundary of equal roots should be considered
as the upper limit of the good regions shown in figure 18. Actually,
this restriction is necessary only for the regions of very high damping.

For example, when the point K = 0.60 deg/ﬁeg/sec and w, = 21.5 radians

per second is taken on the boundary for T1/2 = 0.60 second in fig-

ure 18 and the characteristic roots are found, the autopilot mode has
the given damping T1/2 = 0.60 second at = 21 radians per second,

whereas the airplane oscillation breaks down into two well-damped non-
oscillatory modes with Tl/2 = 0.22 second and T1/2 = 0.09 second.

Thus, for this moderate damping, points above the boundary of equal
roots still give the required damping.

For extremely large values of damping, however, the boundary of
equal roots becomes important. In fact, the maximum damping of the
complete system at a fixed value of ¢ is the largest negative value
of R occurring on the boundary of equal roots. The polints on the
boundary of equal roots are obtained by using ® = O in equations (2la)
and (21b). The largest value of R occurring on the boundary is
abtained by setting the discriminant of equation (2la) equal to zero
with o . This procedure gives the quartic in R (from eq. (25)
with ® ):

o
o Xe;

(5e2 = )R + 2po(2t? - U3 + (BRo? + 200)B + 2PoQR + @2 = 0 (27)

\
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The largest negative real root of this equation is the value of the
maximum damping. For the example considered, this value is R = -5.11
and the corresponding Ty/o = 0.1k second. For this value of damping,

the good region becomes a single point on the boundary of equal roots.
The airplane mode is a double real root equal to -5.11, and the auto-
pilot mode is an oscillation with the same amount of damping. The
autopilot characteristics for this maximum~damping point were used in
calculating the motion subsequent to a 5° sideslip disturbance (fig. 19).
For practical purposes, the airplane motion can be considered as non-
oscillatory, since the autopilot oscillator is of too high a frequency
to have an appreciable effect on the airplane. The well-damped nature
of the Dutch roll motion (which has now become nonoscillatory) is evi-
dent in the B-motion. The slow return of the roll motion is due to the
spiral mode. Although the lightly damped spiral mode is generally not
considered troublesome, it is necessary to keep in mind that the dis-. '
cussion in this paper deals only with the improvement of the damping of |
the Dutch roll mode, and that the two aperiodic modes in the airplane'’s
lateral motion have been ignored.

Effect of varying € on curves in the Kwy-plane.- In order to

obtain an idea of the effect of changing { on the curves in the
Kwo-plane, a comparison of the boundary of equal roots, the airplane

damping boundary, and the boundary for T1/2 = 0.60 second 1is presented

in figure 20 for ¢ = 0.3, 0.6, and 0.9. Although the region of improved
damping with negative gearing increases in size, the narrowness of the
frequency range and the other difficulties previously mentioned still
make the use of negative gearing impractical. The increased slope of

the upper part of the boundaries simply implies, as would be expected,
that for larger values of {, larger values of K are required at any
value of wp to make the autopilot mode become unsteble. The variation
in the position of the boundary of equal roots simply implies that the

more highly damped mode associated with each point on a given boundary
tends to become critically damped at lower gearings as { 1Increases.

None of these variations appear to be very important practically.
Indeed, the most important fact about the effect of varying ¢ is that
the bottom part of the boundary approaches the same value of X at
large values of g, for all values of €. This behavior is due to the
fact that the asymptotic value of K 1is Ky, the value required to
obtain the given amount of damping with an ideal autopilot. Now, the
bottom part of the boundary can be seen to be the important part, since
it gives the lowest value of K for which the system has the required
damping; also, the mode which attains the required damping at the points
on this part of the boundary is the airplane mode. The flatness and
invariance with { of the bottom part of the boundary imply that the
minimum value of K for which a given damping may be attained is rela-
tively invariant for changes in { and @y at fairly large values
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of wgy. This fact will be used in the next section to obtain a simple
rule-of-thumb method for designing an efficient yaw-rate damper which
will insure a required dsmping for several extreme flight conditions of
an airplane using low gearing.

Design of Compromise Yaw-Rate Damper

For the sake of simplicity, the sutopilot to be designed will be
assumed to provide only a yawing moment proportional to yawing velocity,
as in the previous analysis. It may therefore be called a Cnr auto-~

pilot. Values of K, ¢, and @y which will efficiently improve the
damping of an airplane in various flight conditions sre desired. The
criterion of the efficiency of the autopilot will be that the gearing
ratio required for the autopllot must be small. This means that the
autopilot power required will be small. Moreover, the use of small
gearing makes the yaw demper easier to override in steady turns.

Table IT gives the parameters used for the three flight conditions
of the airplane chosen for the present example. Case I is a high-1ift-
coefficient, low-wing-loading landing condition at sea level. Case II
is a low-lift-coefficient, medium-wing-loading cruising condition at
30,000 feet. To complete the picture, case III is a high-1lift-
coefficient, high-wing-loading cruising condition at 30,000 feet. These
cases will serve as examples to illustrate the method.

Table II shows that the Dutch roll oscillation in case II is very
poorly damped, since it requires almost 7 seconds to damp to one-half
amplitude. Although the other two cases are not so poorly damped, they
are still umsatisfactory. Calculated motions for the three cases in
response to a 5° disturbance in sideslip are shown in figure 21. No
attempt will be made to set up any complicated criteria for adequate
damping. Instead, the criterion chosen for purposes of illustration
will be that the Dutch roll oscillation should damp to one-half empli-
tude in 1 second or less at any flight condition. Actually, the auto-
pilot may be designed to insure a different amount of damping for each
flight condition, in case one of the flight conditions is required to
be more stable than another.

The fundamental problem is to find the set of points (K,wg, ) which

satisfy the given damping criterion for all three flight conditions.
Moreover, the minimum possible gearing is desired. The value of Ko

for Tl/2 = 1 second is calculated for each flight condition. From
the equivalent-oscillator analysis, the value of X, 1s shown to be

1 1.386

= e—

C1 Ty/2

-PO
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Substitution from table II gives the values of K, as 0.1213, 0.0698,
and 0.137k deg/ﬁeg/sec for cases I, II, and III, respectively.

If the largest of these values of K, (corresponding to case III)
is chosen for the gearing of the autopilot, the curve for Tl/g = 1 second
in the {wo-plane will be the critical curve for case III, but for cases I
and ITI the curve for Tl/2 = 1 second wlll be a curve between the air-
plane damping and the critical damping. Each of these three curves
defines an infinite region in the upper right portion of the gmb—plane
as the region insuring better damping. Therefore, in the {wy-plane an
infinite region of points which are common to these three regions must
exist and can be used with this value of K +to obtain better damping
than T1/2 = 1 gecond for all three flight conditions. A plot of these

-—

regions is shown in figure 22(a), where K = 0.1k deg/ﬁeg/sec has been
used. The plot shows that any set of values in the {w,-plane which
insures Tl/2 = 1 second for case II, the high-frequency case, will

also insure this amount of demping for the other two cases. However,
eny point in this reglon is at a value of wy considerably above the

optimum for cases I and IITI. As was previously pointed out, for such
values of ®g the minimum value of K for which a given damping may

be obtained does not differ much from Ky. The implication is that the
minimm value of K for which Tl/2 = 1 second may be insured for

case III, while at the same time Tl/2 remglins less than 1 second for
case II, is not much less than 0.137h deg/heg/sec. To confirm this
hypothesis, the necessary points on the curves in the {wy-plane for
Tl/2 = 1 second were obtained for K = 0.12 de%/aeg/sec and

K =0.10 de%/aeg/sec, and the significant parts of these curves are
shown in figures 22(b) and 22(c).

For values of K < 0.1374 deg/&eg/sec the curve for T1/2 = 1 second
for case IITI must be a loop, since the damping is higher than the critical
damping. Figure 22(b) shows that when K = 0.12 de%/aeg/sec this loop
is still large enough to intersect the region where Tl/2 < 1 second for
case II. The hatched region on figure 22(b) is the region which will
insure Tl/2 < 1 second for all three flight conditions at K = 0.12

deg/&eg/sec. Figure 22(c) shows that the loop for case III has become
too small to intersect the region where Tl/2 < 1 second <for case II

when X = 0.10 deg/heg/sec. Therefore, a value of Tl/2 < 1 second
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cannot be obtained for cases II and III simultaneously when K = 0.10
degy%eg/sec. The curve for case I is not shown in this figure since,

as seen in figures 22(a) and 22(b), it is not necessary.

The discussion of figure 22 shows that, in order to improve all
the flight conditions in the present example with a single second-order
autopilot, a gearing ratio has to be used which is almost as large as
would be needed for an ideal autopilot that would stabilize all the
f£1light conditions. This difficulty arises because the low-frequency
conditions require the highest values of K, as can be seen by
exemining the approximate expression for the frequency of the Dutch
roll oscillation at any flight condition and the assoclated expression

for Xg:

2 Cn
eub<KZ2 - K}% )
2
K
X7
QE%KZE-K—(P-PO) Cn o B
Ko - b X ~ B ( - 0) (28b)
V2 CDB CDS (DA2

Because of the possibility of variations in CnB, CnS’ and P - P,

in the various flight conditions, it is not possible to state that in
general the low-frequency flight conditions will require the higher
values of Ky, as is true in the present example. When the highest
required value of X, occurs at the high-frequency conditions, the
minimumm value of K <for the compromise autopilot may be.considerably
below this highest required value, because the region of overlap similar
to that shown in figure 22(b) will include the optimum point for the
high-frequency condition.

In any case, the characteristics of the compromise autopilot can
be obtained by plotting the regions insuring the required damping for
the various conditions at various values of K below the maximum value
of Ky, as is done in figure 22. The value of K which leads to a
small overlap region is then the minimum compromise gearing, and the
values in the overlap region of the {w,-plene define the possible values
for ¢ and o, of the compromise autopilot.
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A convenient method is avallable for determining the range of
values of K +to be used in obtaining the overlap region. The values of
Ko and the optimum value of K vwhich will yield the required damping
for each of the flight conditions are calculated. Then the compromise
value of K must lie between the highest optimum value of K and the
highest value of Kg. In making the plots it may soon become clear that
some of the flight conditions do not need to be considered, as happened
with case I in the present example.

In the present example, it has been shown that a gain much smaller
than the largest value of Ky necessary cannot be used, unless a vari-
able gain is available. If & constant gain must be used at all flight
conditions of such an alrplane, a simple rule of thumb for designing
the autopilot would be to choose the largest value of Ko (corre-
sponding to the low-frequency conditions) and values of { and Wy
near the optimum point of #he high-frequency condition. In this way
some advantage is derived from the second-order characteristics of the
autopilot in that the damping obtained from the autopilot is much larger

for the high-frequency conditions than that which would result from an
ideal autopilot with this gearing.

In applying this simple method, 0.1k deg/ﬁeg/sec was chosen for
the value of K, and the optimum point was found for case I1. The opti-
mun point was ¢ = 0.523 and g = 9.49 radians per second. Figure 23
shows the calculated motions for the three flight conditions with this
autopilot, subsequent to a 5° sideslip disturbance. A comparison of
figure 23 with figure 21 reveals- -that the stability of all three flight
conditions is improved. In particular, case II is greatly improved,
while cases I and III both have T1/2 slightly less than 1 second.

Since the results of figure 21(b) show that a gearing of
0.12 deg/heg/éec could have been used, the optimum point for case IT

was calculated for this gearing and found to be ¢ = 0.485 and

wgy = 8.8l radiens per second. Figure 24 shows the motions in the three
flight conditions with these autopilot characteristics. A comparison
of this figure with figure 23 reveals that the damping obtained with
this autopllot is only slightly less than the damping obtained when

= 0.14 de%/aeg/sec.

If the low-frequency cbnditions require little improvement, the
problem approaches that of improving only a single flight condition,
so0 that the optimum-point characteristics may be used to decrease the
gearing necessary. For example, suppose that T,/p = 1.5 seconds had

been considered satisfactory for the low-frequency conditions. The
value of X, necessary to obtain this damping is 0.075 de%/&eg/sec,
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and the corresponding optiﬁum point for case II is § = 0.389 and

Wy = T7.40 radians per second. The improvement of the stability of the
various flight conditions may be seen from the motions presented in fig-
ure 25. In these motions the value of T)/p for cases I apd III is

between 1 and 1.5 seconds, but the value of Tj/p for case II is well
under 1 second. '

It is clear from the previous discussion that for the present
example an autopilot with fixed characteristics would require a large
gain (corresponding to the largest value of Ko) in order to improve
both landing and cruising flight conditions. A variable gain would
therefore be desirable, so that this excessive gearing would not have
to be used at the higher speeds. Although it would be impractical to
expect that all three autopilot parameters should be variable in flight,
as would be desirable to obtain the optimum autopilot for each flight
condition, it would be relatively simple to make the gain variable. The
value of ¢ chosen would be that of the optimum point for the high-
frequency condition (as calculated for the low-gearing value), and the
value of gy would be preferably slightly above the optimum value of

wy for the high-frequency condition. (Because of the rapid change in
damping at values of @y, less than the optimum, in practice a safety

factor should generally be added to this value.) In such cases, prob-
ably only two gain positions would be necessary - a high gain for the
low-velocity conditions and & low gain for the high-velocity conditions.
Thus, low gain could be used in the high-velocity flight conditions, so
that the adverse effects of the autopilot in steady turns at high
velocity would be small.

Valldity of Assuming Pure Cnr Autopilot

A few final remarks will be made concerning the assumption that the
autopilot is sensitive to yawing velocities only, and provides yawing
moments only. For practical autopilot installations, the sensing device
(usually a gyroscope) is fixed in the airplane. The device is therefore
sensitive to yawing velocities about some axis fixed in the airplane.
The equations of motion, however, are set up with respect to the sta-
bility axes. For various flight conditions, the angle of inclination
between the gyro axes and the stability axes varies because of the
varying angle of attack. This angle of inclination makes the gyroscope
sensitive also to rolling velocity about the stability axes. In addi-
tion, the displacement of the autopilot-actuated control surface from
the longitudinal stability axis gives rise to rolling moments. As shown
in reference 10, these two effects cause increments in Cnp, Clr, and

CZP due to the autopilot, in additioﬁ to the expected Cnr increment.
The CnP effect is the most important of these in affecting the Dutch
roll stability of the airplane, and this effect will now be discussed.
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When the stability of a single flight condition is to be improved,
the CnP effect may be removed by orienting the gyro axis along the

flight path, and no modification of the results is necessary. If an
angle of gyro inclination does exist, the general method of setting up
the constant-damping boundaries 1s, of course, still valid. In order
to take account of the Cnp effect, DV is simply replaced in equa-

tion (6) by the proper linear combination of DY and DJ, as shown in
reference 10. Because of the presence of the D term all three degrees
of freedom must be used, and the equivalent-oscillator simplification can
no longer be used. Thus, the method is more complicated when the CnP

effect of the autopilot is not small enough to be neglected. When the
Cnp effect becomes excessively large, the problem becomes even more

complicated because of the fact that the damping of the aperiodic modes
becomes important, and curves of constant damping for these modes (corre-
sponding to real roots) have to be plotted. In fact, the aperiodic modes
may combine to form another oscillation.

In considering the problem of simultaneously stabilizing various
flight conditions which have various angles of attack, the CnP effect

must always be considered umless the gyro axis can somehow be rotated
so that i1t is always parallel to the relative-wind axis. The CnP effect

can sometimes be ignored, if the angle-of-attack range of the flight con-
ditions is small, by choosing an orientiation of the gyroscope in such a
direction that all the angles of inclination are small. Because of the
extreme complexity of the problem when the CnP effects must be con-

sidered, this paper is confined to the consideration of Cp,. effects
only.

CONCLUDING REMARKS

The damping of an oscillatory system that makes use of a second-
order rate damper with a given gearing ratio KX can be improved by
adjusting the shape of the autopilot frequency response (that is, the
damping ratio and the natural frequency of the autopilot). For the
purpose of determining the effect of a second-order yaw-rate damper on
the demping of the Dutch roll motion of an alrplane in a given flight
condition, the airplane may be represented as an equivalent oscillator.
By using this equivalent-oscillator concept, the optimum shape of the
autopilot freguency response corresponding to a given gearing ratio or
required damping may be obtained from a simple set of equations for any
flight condition. The gearing ratio necessary to obtaln a given amount
of damping when the damping ratio and natural frequency of the autopilot
are near their optimum values is considerably less than the gearing ratio
necessary to obtain the same amount of dsmping with an idealized (no-lag)

“autopllot.
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The problem of designing a second-order yaw damper for an airplane
which requires improvement in damping for several flight conditions is
more complicated, since for each flight condition the airplane is repre-
sented by a different equivalent oscillator. However, a simple method
of compromise is derived for flight conditions in which the effect of
the yaw-damper sensitivity to rate of roll is small enough to be
neglected.

The effects of a second-order yaw damper on the stability of any
given flight condition of an airplane can be obtained by examining the
constant-damping curves in the plane of the .damping ratio and natural
frequency of the autopilot and in the plane of the gearing ratio and
naturael frequency of the autopilot. Theoretically, any given flight
condition may be stabilized by using either positive or negative gearing.
When negative gearing is used, the autopilot natural frequency must be
less than the airplane frequency. The use of negative gearing is shown
to be impractical, however. For positive gearing, the autopilot natural
frequency must be greater than the airplane frequency.

For fixed positive gearing, there is an infinite nuwber of combi-
nations of autopilot natural frequency and damping ratio for which the
second-order autopilot gives better damping than an ideal autopilot of
the same gearing. For fixed positive damping ratio of the autopilot,
there is a range of values of positive gearing ratio which will provide
a given damping to the system at any autopilot natural frequency greater
than the airplane frequency. Increasing the gearing ratio of the auto-
pilot to excessive values will always cause the autopilot mode of oscil-
lation to become unstable for a given damping ratio and natural frequency
of the autopilot. If larger gearing ratios are to be used in order to
obtain higher stability for the airplene mode, the damping ratio or the
natural frequency of the autopilot, or both, must be increased. Expres-
sions are derived for the maximm damping’under various conditions.

Langley Aeronautical Laboratory,
' National Advisory Committee for Aeronautics,
Langley Field, Va., October 2, 1952.
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APPENDIX A

EXPRESSIONS FOR CONSTANT-DAMPING CURVES AND DISCUSSION

OF EQUIVALENT-~OSCILLATOR CONCEPT

7

Since the characteristic equation of the airplane-damper system is
of sixth degree, as given in equation (7), it may be written

F(D) = 10 + A5D5 + A)_,_DI‘L + A3D3 + AsD® + A1D + Ay = O (A1)
Here As, Ay, . . . Ay are functions of K, {, and w, for a flight

condition in which the airplane parameters in equations (3) to (5) are
known. If any one of the three autopilot parameters is fixed, stability
boundaries may be obtained in the plane defined by the other two param-
eters by letting D = R + iw, fixing the value of R for each curve,
and varying . Since equation (Al) is a complex equation, it may be
written as two real equations and solved for the two autopilot varieble
parameters at each value of D =R + iw.

According to reference 6, if

fn(R) = %‘%ﬁm . (n = 15213:”') (AQ)

then the two real equations obtained from equation (Al) by setting
D equal to R + iw are ‘ ' ’

F(R) - cnefe(R) + whfh(R) o =0 | (A3)

£(R) - oP£4(R) + wf5(R) = 0 (Ak)

Since the coefficients of - F(R) and fp(R) are functions of the

two variable autopilot parameters only, the values of these two param-
eters which will yield an oscillatory mode of motion with a given
damping may be obtained by choosing a value for R and solving equa-
tions (A3) and (A4) at any value of w. This procedure yields a point

i e A Ap T et = o —— - e e 1 ——
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on the given R curve in the parameter plare; for instance, in the
two-plane if { and wy Dbe chosen as the variasble parameters. In this
case, calculations are simplified by the use in equations (A3) and (AL)
of . A and B as defined in equation (1), since these equations become
linear in A and B.

Because of the increasing difficulty of obtaining accurate values
of stability derivatives for present-day airplanes, the characteristics
of the airplane may be given in terms of transfer functions which are
obtained from flight data. In order to obtain the form of the char-
acteristic equation in terms of transfer functions, equation (7) is

divided through by (Dz + 2§wbD’+ wbé)Fo(D). The resulting equation is
» v 2 v v3
2 p- < 21 Ky 2D° - o= C, D)+ Yo CrC
Kuw, v2 (E“b bGIB)( "PX T " Zp) b3~ 'lp

1- — Un,
D24-2§woD+-m02 b o Fo(D)

The first factor in the second term of this equation is the autopilot
transfer function [:i] (D) (See eqg. 8.) 1If equations (3) to (5) are

solved operationally for zero initial conditions, the expression in
brackets is found to be the airplane transfer function:

| v 2o ¥ L3
5_Ia b° Fo(D)

Therefore, the characteristic equation may be written

5 DV _
; [ﬁﬂP(n)[{lA(n) o (46)

in terms of the autopilot and airplane transfer functions. The alrplane
transfer function for the lateral motion, as shown in egquation (A5),
should have -‘the form of a cubic in D over a quartic in D. Therefore,
when equation (A6) is cleared of fractions a sixth-degree equation of
the form of equation (Al) is again obtained as the characteristic
equation.
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The setup and solution of equations (A3) and (A4) would be greatly
simplified if the characteristics of the airplane lateral motion could
be expressed as a second-order system rather than a fourth-order system.
Since the yaw damper is used essentially for damping the Dutch roll
osclllation, it was thought desirable to see whether the airplane could
be replaced by an equivalent oscillator whose damping and period were
those of the Dutch roll oscillation of the airplane. That is, if the
Dutch roll mode, as calculated when three-degrees of freedom are con-

sidered, is obtained from the quadratic equation D2 +PD +Q, =0,

the question is whether the airplane characteristics may be represented
by the oscillator described by

2 Kgro\[o
it - ) 2 0) o
Ky
Equation (A5) may be rewritten in the form

- —

Ve
2] o - w2 6" (0 + =) (0° + oD + o)
51y 2 2
X D(D™ + D + a
, 2“b<“22 ' %)Qﬁ SERT| I A
. |

i ~C1D (D + al)(D2 + agD + a3) ()

D2 + P + Q|| D(D2 + aud + a5)

Le

’

where the constant Cl is defined by

2
v<C
" o)
Cl-_—-

2b2ub<%22 - §KZE>

The expression in the first bracket on the right-hand side of equa-
tion (A7) is the same as would be obtained for E%g] (D) if the assump-
A

tion were made that the airplane could be represented by the equivalent
oscillator described previously. Thus, if the expression in the second
bracket has a frequency response which does not significantly differ
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from unity for the range of frequencies which is. important in the air-
plane frequency response, then the expression in the first bracket can
be used as a valid approximation to the alrplane frequency response.
Therefore, the expression in the second bracket can be considered as a
correction function.

The factor D2 + a)D + a5 yields the two resal characteristic roots

of the airplane lateral motion corresponding to the spiral mode and the
demping-in-roll mode. The ususl approximation to the damping-in-roll

root is VCZP/MbubKX , and the spiral root is of the order of VCYB/ébpb

However, the numerator of the second bracket can be shown to be

C C
p3 - Y B+ ZP D2 + ve !

- —

BT AR T SR S

It CZB = 0, this cubic has the roots

Oty ‘v
D=0 D=-2—u£g ' D=—'——P—2'.E
b ‘ hpbKX

which are merely approximations to the real roots which occur in the

cubic in the denominator of equation (A7). It can therefore be expected

that the second bracket will ususlly be close to unity and that no large

errors will arise if the airplane lateral motion is represented by a

single-degree-of-freedom oscillator in yaw with nbndimensional inertia

° o Kxg®

2up{Kg = - E—E— and the same period and damping as the Dutch roll oscil-
X

lation. This is especially true for small values of CZB.

For the airplane used as an example in this paper, the correction
2

D(D + @D + a5)

quency range and its effect on the total airplane transfer function was
found to be very small except close to zero frequency. Finally, actual
comparisons of the stability boundaries for the three-degree-of-freedom
enalysis and the equivalent-oscillator approximation showed that the
approximation was valid.

function

was evaluated throughout the fre-
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When equation (A7) is used with this approximation, the character-
istic equation as given in equation (A6) becomes

Lot e |

l]jz + 28w,D +w6%”]32 + PD + er

‘or

2 .
2 Kgp“\r o ) 2 2) ¥2 % p -
2u <Kz ____._)<DJ+POD+QO (D + 2tw D + a -ggK‘Do CpD = 0

Ky° 5
(48)
The characteristic equation of the -system is therefore a quartic,
F(D) = D* + (By + 2Lw)D3 + (Qp + 02 + 2LwsPo)D? +

(P oo + 2lwgQq + CZI_K“)OE)D + Qo‘;"oa

= p* + (py + A)D3 + (g, + B + AP)D? +
(PGB + QoA + C1KB)D + QB

=0 . (49) _

The equations for the stability boundaries which replace equa-

tion (A3) and equation (A4) for a fourth-order characteristic equation-
are . )

F(R) - o2£5(R) + @t = 0 : " (a10)

£1(R) - aPr3(R) =0 (A11)

The functions’ fn(R) are obtained from equa.tion‘(AQ) .

——— e e e S ———— - A — e i A e & e o o m e T
- ~ ——— -= - -
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As an example, the actual parametric equations used for the equiva-
lent oscillator will be derived. Equation (A9) is used in equation (A2)
to give

£1(R) = 1R3 + 3R2(P, + A) + ZR(Qo + B + APo) + (Po + C1K)B + QoA

£p(R) = 6R® + 3R(P, + A) + Qg + PoA + B

f3(R) =L4R + P, + A

These expressions are used in equations (A10) and (A1l). To obtain the
constant-K curves (that is, curves in the AB-plane or {wy-plane), the

resulting equations are written in A and B, as follews:

&33+P0)w2 - r(®? + PR + QOHA + {aﬁ - @2 + (P + C1K)R + Q;J}B =

o - (682 + 3PcR + q)a? + R2(R2 + PR + Q) - (a12)

EDQ_(3R2+2POR+Q05JA-(2R+PO+01K)B=

-(UR + P)a? + R(hRe + 3P,R + 2Qo) (413)

For a given value of K, any constant-damping curve 1s obtained by
fixing R at the appropriate value and taking a sufficient number of
positive values for @ +to obtain the points necessary to determine the
curve. The resulting two linear equations in A and B are solved to
obtain each point. If curves in the {w,-plane are desired instead, the

values of [ and wy can be obtained for each set of values of A
and B <for which B is positive.

The constant-{ curves in the Kw,-plane are obtained by solving the,
parametric equations for K and g Iinstead of for A and 3B. For
example, solving equation (A13) for K gives




NACA TN 2857 39

K =%3-{(A + Py + )-LR)w?- EPO + 2R)B + (QO + 2P.R + 3R2)A +

Rr(2q, + 3P_R + hREH}

" 5 {(egwo + Pg + LtR)u:;2 - EPC + 23)0302 + egwo(Qo + PR + 332) +
C10
R(20, + 3p.R + mazl} (A1)

and using this equation in équation (A12) gives

(00 -B2- oP)B - (b, + 28) (02 + B2+ ot - (a5 + 28R + 282) (2 + B2) =

Qo-Re-a)2 %2-2§u) Po+%)(w2+R2)+wu- +2P0R+2R2 (a.)2+R2) =0
o %

(A15)

This equation is a quadratic in wo for fixed values of t, R,
and . The values of Wy from equat"ion (A15) are then used in equa-
tion (A14) to obtain the points on the curves in the Kmg-plane. Since
equations (A12) and (A13).are linear, there is only one point in the
AB-plane or the gcno-plane for each ostillatory mode when K is fixed.

However, for a fixed value of £ there may be two points in the
King-plane for a given oscillatory mode when the quadratic equation (A15)
has two real, positive roots for' Oy - .
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APPENDIX B

DERIVATION OF EXPRESSIONS FOR MAXIMUM-DAMPING,
CHARACTERISTICS WITH FIXED GEARING RATIO
BY USE OF EQUIVALENT-OSCILLATOR CONCEPT
The characteristic equation of the airplane—yaw-damper system,
for the assumption that the airplane may be replaced by an equivalent
oscillator, is .
ot + (p, + )03 + (ay + B + APG)D? + (PgB + AQy + C1KB)D + QB = O
(B1a)
The conditions on A and B which result in the maximum damping for
a given gearing ratio can be calculated as follows. For the case of

maximum damping, equation (Bla) will have two pairs of equal complex
roots; hence this equation becomes:

(D2‘+ D + Q)2 = D% + 2703 + (B2 + 2q)p® + 2pD + @2 (BIDb)

where D2 + PD + Q 1is the quadratic corresponding to the double oscil-
latory root at the cusp point. The following four equations are obtained
by equating like coefficients in equation (Blb):

2P = Py + A | (B2)
P2 +2Q =Q, +B + AP, | (B3)
£PQ = P_B + AQ, + C1KB . | (84)
Q% = B | (B5)

Since K, Cj, Py, and Q5 are knownl‘thése four independent equations

1 may be solved for A, B, P, and Q. ‘Thus, the ‘autopilot parameters
which will give the highest damping to the Dutch roll oscillation, and
also the period and damping of this oscillation, may be determined.
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From equations (B2) and (B5S)
/

A =2P - Py ' (B6)

B=%§ | (B7)

Using equations (B6) and (B7) in equation (BL4) yilelds

P = (Po * ClK)QQ B P0Q02 , (88)

2%(Q - %) .

e
When equations (B6) and (B7) are used in equation (B3), the result may
be written

o (P - P5)° = (a - a)° (89)

and by substituting equation (B8) into equation (B9) a quartic equation
in Q 1is obtained, which may be written

2

Eo(e - )2 + ogka®| = ag(a - )"

Finally, this equation yields the two quadratics in Q:

CiK 2 : 2
1+ —2 _\Q° - 200 =0 B10
<+Pof2JQ_o> R 210

Evaluation of the discriminant of equation (B10) reveals that equa-
tion (B10) has only two real rpots, one less than Q, and the other

greater than @Q,. As can be seen from figure 6, the smaller value of Q

(which yields a smaller value of w,) corresponds to the breakdown of the
unstable loops for positive K. The larger real root of equation (B10O)
is therefore the one which yields the maximum-damping point for positive
gearing ratio. Negative gearing ratios willl be discussed subsequently.

The corresponding value of P 1s obtained by substituting this
larger root into equation (B8), and the maximum-damping point in the
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AB-plane is easily obtained from equations (B6) and (B7). Thus, the
value of the maximum damping of the Dutch roll oscillation obtainable
with a given gearing ratio, and also the valyes of autopilot frequency
and damping which will yield this maximum damping, may be obtained by
simply solving a quadratic equation (eq. (B10)). °

The procedure is even simpler when the required damping is given
and the values for the autopilot parameters which would make this
damping the maximum damping are to be determined.  The value of P 1is
determined by the required damping, since

1.386
Ty /2

P =-2R = (B11)

and the corresponding optimum value of A may be obtained from equa-
tion (B6). Equation (B9) now gives

Q=0q, % Jé;'(P - Po) (B12)

Both values of @Q obtained from equation (B12) correspond to optimum
points, since they both correspond to the given positive value of
damping. These values mey now be used in equation (B7) to obtain the
corresponding values of B. Finally, the two values of gearing ratio
may be obtained from equation (B8), which gives

_ 2PQ - P,B - AQ,

5 (13)

X

The smaller values of Q (obtained from using the minus sign in
eq. (B12)) result in negative values of gearing ratio and values of wg

less than the airplane frequency. The possibility of using negative
gearing to improve the damping is discussed further in the body of the
paper. :




NACA TN 2857 S o 43

‘ 1.

10.

REFERENCES i

Sternfield, Leonard: Effect of Automatic Stabilization on the
Lateral Oscillatory Stability of a Hypothetical Airplane at
Supersonic Speeds. NACA TN 1818, 1949.

. Gates, Ordway B., Jr.: A Theoretical Analysis of the Effect of

Several Auxiliary Damping Devices on the Lateral Stability and
Controllability of a High-Speed Aircraft. NACA TN 2565, 1951.

. Schade, Robert 0., and Hassell, James L., ‘Jr.: The Effects on

Dynamic Lateral Stebility and Control of Large Artificial
Variations in the Rotary Stability Derivatives. NACA TN 2781,
1952.

Greenberg, Harry: Frequency-Response Method for Determination of
Dynamic Stability Characteristics of Airplanes With Automatic
Controls. NACA Rep. 882, 1947. (Supersedes NACA TN 1229.)

. Ansoff,vH. I.: Stability of Linear Oscillating Systems With Constant

Time Lag. Jour. Appl. Mech., vol. 16, no. 2, June 1949,
pp. 158-164.

. Brown, W. S.: A Simple Method of Constructing Stabllity Diagrams.

R. & M. No. 1905, British A.R.C., 19k2.

. Sternfield, Leonard, and Gates, Ordway B., Jr.:- A Method of

Calculating a Stability Boundary That Defines a Region of
Satisfactory Period-Damping Relationship of the Oscillatory Mode
of Motion. NACA TN 1859, 1949.

. Sternfield, Leonard, and Gates, Ordway B., Jr.: A Theoretical

Analysis of the Effect of Time Lag in an Automatic Stabilization
System on the Lateral Oscillatory Stability of an Airplane.
NACA Rep. 1018, 1952. (Supersedes NACA TN 2005.)

. Gates, Ordway B., Jr., and Schy, Albert A.: A Theoretical Method of

Determining the Control Gearing and Time Lag Necessary for a
Specified Damping of an Aircraft Equipped With a Constant-Time-Lag
Autopilot. NACA TN 2307, 1951.

Gates, Ordway B., Jr., and Sternfield, Leonard: Effect of an Auto-
pilot Sensitive to Yawing Velocity on the Lateral Stability of a
Typical High-Speed Airplane. NACA TN 2470, 1951.




Lkl

TABLE I
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TABLE IT

PARAMETERS USED FOR THREE TYPICAL FLIGHT CONDITIONS OF THE

ATRPLANE IN DESIGN OF COMPROMISE YAW-RATE DAMPER

Case T Case I1 Case III
Altitude, £t . . . . . . . . . .. Sea level 30,000 30,000
Mach number . . . « ¢« « « ¢ o « & 0.22 0.75 0.5
Wing loading, 1b/sq £ . . . . . . 54 - 65 85
By « = o s 0 o o o s T = Iy 81.25 106.3
Kg2 o v v v e e e e e e . . 0.0081 0.0069 . 0.0051
K22 « o e o o 0 v . e e e 0.0433 0.0419 - 0.0409
KXz « o = o o o o o v o . ... 0.0027 0.0025 0.0010
CL, « « « « - Gt e e e e e e e _ 0.765 - 0.262 0.771
Cng v v v v v e e e 0.205 0.205 0.212
CZB C e e e e e e e e e e e .. -0.099 -0.107 -0.095
CYg « o v o v v e e -0.930 -0.878 -0.88L
Clp v v me s e -0.425 -0.47h -0.435
T T 0.288 0.200 0.300
Cop = v v v v s e e e e e e 0.003 - 0.010 0.003
Cnp ¢ = v o o o e e e e e e -0.165 '~0.150 -0.165
cn8 C e e e e e e e e e e e e -0.163 -0.163 -0.163
Period, S8€C . v ¢ ¢« « ¢ v o o o . 2.3 ‘1.h 2.1
T1/ps B€C « o v v v o o ... . . 2.0 6.9 2.4
Poy 86T v v . 0.70k 0.200 0.573
Qs 562 L i u e ... e e 7.79 1.k 8.78
Ci, 8™ L o L. L. 5.63 17.0 5.92
V/o, sec™ . . . ... ... 8.68 26.6h 17.77
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Figure 1l.- Values of autopilot parameters A end B for which a neutrally
damped oscillatlion will occur 1ln the la?eral mo'tion. Three degrees of

lateral freedom; K = 0.086 deg/ﬁeg/séc. Values of o in radians per
second are given at representative points.
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Figure 2.- Valuee of autopllot parameters A and B for which an oscil-
letion will occur in the lateral wotion with demping equal to thet of
the nsturasl Dutch roll oscillation. Three degrees of lateral freedom;

K = 0.086 deg/aeg/sec. Values of « 1n radians per second are given

at representative points. The dashed line 1ndicates the value of B
corresponding to the ailrplane freguency. .
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Figure 3.~ Values of autopilot parameters A- and B for which an oscil-

lation will occur in the lateral motion with T1/2 = 1.3 seconds, a
typical damping value between the alrplane damping and the critical

damping. Three degrees of lateral fresdom; K = 0,086 deg/heg/sec.
Values of ® in radians per second are glven at representative points.
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Figure 4.- Values of autopilot peremeters A snd B for which an oscll-—
1gtion will occur in the latersl motion with Ty/p = 0.75 second, the

critical damping., Three degrees of lateral freedom; K = 0.086 de%/deg/sec.

Values of o 1in rediene per second are glven at representative points.
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A and B for which an oscil-

lation will occur in the lateral motion with Tl/2 = 0,60 second, a

typical demping curve for greater damping then the critical., Three

degrees of lateral freedom; K = 0,086 deg/heg/sec. Values of @ in
radians per second are given at representative pointe.

300

LGge NI VOVN



T R Y A BOER
.8k
Bl
i TUZ ) Sec
38 (Maximum
41 damping EO( )
I . \ , .TS(Crfﬂca/)
K . {30
a & 2.60(Alrplang)
_ % ”
; \:\\_

K TV2=0'?3 Sec

'_ Ti2=2.60 sec

> Tjeal30s¢c AR

6 & 0 iE s 20
Uy, radians/sec

1 1

Figure 6.- Typical constant-damping curveg in the {wo-plane showing the
varistion of the type of curve as the required demping increases.
K =0.086 deg/deg/sec. The dashed line is the boundary of equal roots.

19 NI vovn

1<



B
o]
Al (
N 77/3 , Sec
3 60
? S8Maxim
_ Z3{Critical
75
2L 2.60(Airplans)
_—— Fquivalent oscillator
/4 Ap—— Three degrees of freedom
= : “‘m!!!-f
0 TE 4 6 & o 2 4 7o

G, radians/sec

Figure 7.- Comparison of regions in the {mg-plane that insure various
amounts of damping as calculated by the three-degree-of -freedom analysis
and the equivalent-oscillator analysis. K = 0.086 deg/heg/sec.
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(b) X = 0.086 deg/deg/sec;

Wo = 10.66 radians per
second; & = 0.1945.

(¢) K= 0.086 deg/deg/sec;
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Figure 9.- Comparison of motions with two different autopilots whose
characteristics lie on a curve for Tyfg = o (corresponding to

points It and 5 in fig. 6).
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Figare 11.- Values of autopilot gearing ratio necessary to obtain a
given damping as the maximum damping.
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Flgure 12.- Values of autopllot perameters K and &, Ifor which a neutrally

damped oscillation will occur in the lateral motion. ¢ = 0.3. Velues
of @ 41in radisns per second are given at represepntative pointe.
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Flgure 13.-~ Values of autopilot parameters X and @, for which an

oscillation will occur in the latersl motion with damping equal to
that of the natural Dutch roll oscillation. € = 0.3. Values of o
in radians per second are given at representative points.
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Figure 14.- Values of autopilot parameters K and @, for which en

oscilletion will occur in the lateral motion with damplng slightly
greater than that of the natural Dutch roll oscillation. ¢ = 0.3.
Values of w in radlans per second are given at representative points.
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Figure 15.- Values of autopllot paremeterse X and @, for which an

cscillation will occur in the lateral motion with T1/2 = 1.00 second,

the meximum damping for K <0 with { = 0.3 (the value of £ in
this figure). Velues of ® in radians per second are given at
representative points.
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Figure 16.- Values of autopilot parasmeters K and @, for which an
oscillation will occur in the lateral motion with T1/o = 0.60 second.

£ = 0.3, Values of ® Iin radians per second are glven at representative
points., ,
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Figure 18.- Typical constant-damping curves in the Kmg-plane showing

the variation in the type of boundery as the damping increeses.
{ = 0.3, The dashed line is the boundary of equal roots.
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Figure 21.- Calculated motions for three flight conditions of the airplane
subgsequent to a 50 gideslip disturbance when no yaw dawper is used.
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Figure 22.- Boundaries of the region where T1/2 < 1.00 second in the

+ tap-plane for three flight conditions of the airplane when a yaw
damper with three different gearings is used.
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Figure 23.- Calculated motions for three flight conditions of the airplane
subsequent to a 5° sidesllp disturbance. Autopilot characteristics:

K = 0.14 deg/deg/sec; { = 0.523; wg = 9.49 radians per second.
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Figure 25.- Calculated motions for three flight conditions of the airplane

subsequent to a 5° sideslip disturbance.

Autopllot characteristics:

K = 0.075 degfdeg/eec; & = 0.389; mp = 7.40 radians per second.
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